
RZV B

* *

* MSD SUPER DISK DRIVE OPERATING MANUAL *
* *

(C) 1983 by MICRO SYSTEMS DEVELOPMENT, INC.

Commodore 64, VIC-20, C3M and PET are Trademarks of

Commodore Business Machines, Inc.

The information in this manual has been reviewed and is believed

to be entirely reliable. However, no responsibility is assumed for

inaccuracies. The material contained herein is for information

purposes only and is subject to change without notice.

U

U

U

y±__2^ contents
v

INTRODUCTION I.I

CHAPTER 1

Install, ation 1.1

CHAPTER 2

Operating Instructions 2.1

Disk Drive Terminology 2.3

Frequently Used Commands

LOAD 2.5

SAVE 2.8

VERIFY 2.9

Utility Commands

OPEN . 2.9

PRINT# 2.10

INITIALIZE 2.11

NEW 2.11

SCRATCH 2.12

COPY 2.12

RENAME 2.13

VALIDATE 2.13

CLOSE . o 2.14

DUPLICATE (SD-2 ONLY) 2.14

>—s CHAPTER 3

■] File Data Handling 3.1
Sequential Files 3.1

OPEN 3.1

PRINT# 3.2

GET* 3.3

INPUT# 3.4

Random Files 3.5

OPEN 3.6

BLOCK-READ 3.6

BLOCK-WRITE 3.7

BLOCK-ALLOCATE 3.7

BLOCK-FREE 3.8

BUFFER-POINTER 3.8

USER1 3.9

USER2 3.9

Relative Files 3.10

OPEN 3.11

PRINT 3.11

CHAPTER 4

Programming the Disk Controller 4.1

MEMORY-WRITE 4.2

MEMORY-READ 4.2

MEMORY-EXECUTE 4.3

BLOCK-EXECUTE 4.3

USER 4.3

CHAPTER 5

Changing the Disk Drive Device Number 5.1

Hardware Method 5.1
Software Method 5.2

U

APPENDICES

Appendix A. Disk Command summary .•••.••• A.I

Appendix B. Error Messages B.I

Appendix Ce BASIC 4. (3 Commands ». C.I

(J

I.I

INTRODUCTION

The MSD SUPER DISK DRIVE is perhaps the most versatile and

efficient disk drive built for the Commodore series of personal

and business computers. The MSD SUPER DISK DRIVE is unique in that

it features both serial and IEEE bus interfaces in one unit. The

result of this flexibility is that the MSD SUPER DISK DRIVE is

compatible with the Commodore SERIES 2001 (with BASIC Version 3.0

or higher), SERIES 3000 (with BASIC Version 3.0 or higher), SERIES

4000 (with BASIC Version 4.0), SERIES 8000 (with BASIC Version

4.0), COMMODORE 64 and VIC 20 computers. The wide range of

compatibility is accomplished by providing a dual serial computer
interface and an IEEE parallel interface. These two interfacing

methods allow multiple disK drives /and printers to share the bus

concurrently. The use of the parallel interface provides for

significantly faster data transfer^ over the serial bus interface.

With the addition of MSD's optidnal CIE or VIE interface board

(IEEE interfaces for Commodore 64 or VIC 20) that plugs into the

expansion port of the Commodore 64 or VIC 20 respectively, the

user is even able to obtain this parallel speed enhancment on the

Commodore 64 or VIC 20. The versatility is enhanced even more /by

the fact that the MSD SUPER DISK DRIVE is upward compatible with

the Commodore 2040 disk drive and read/write compatible with the

Commodore 2031, 4040, 1540 and 1541 disk drives. This means that

disks that were saved from the 2040 can be read by the MSD SUPER

DISK DRIVE and disks that have been created on the 2031, 4040,

1540 and 1541 can be both read from and written to without any

harm to existing programs on the disk. ;',,

The MSD SUPER DISK DRIVE is a high quality 'smart' disk drive that

does not require the use of any memory in the computer. ; instead,
the SUPER DISK DRIVE contains its own microprocessor and memory

allowing the computer to transfer commands to the disk and then

continue other operations. The disk in turn processes those

commands to perform the desired function. In order to be

compatible with disks created on the various Commodore disk

drives, the SUPER DISK DRIVE uses 35 tracks on a disk with a

density of 48 TPI (tracks per in:h). The single-head drive

provides a capacity of 174,848 bytes on a single diskette. These

bytes are arranged in blocks with each block representing one

sector or 256 bytes. Figure I.I provides more details on the

technical specifications pertaining to the MSD SUPER DISK DRIVE.

This manual is designed to give the user the necessary information

for normal usage of the disk drive as well as advanced information

for the programmer that wants the utmost in disk drive capability.

This manual begins with the actual connection of the MSD SUPER

DISK DRIVE in Chapter 1. Chapter 2 deals with the normal

operations such as saving and loading programs. The more advanced

applications are covered in Chapter 3 while Chapter 4 deals with

the programming of the disk controller and its memory. Chapter 5

explains the methods for changing the disk device number. An

appendix section is provided to give a list, of error messages as

i. 2

well as a summary of all commands available to the user including

the BASIC 4.0 commands. It is very important that at least

Chapters 1 and 2 of this mar.ual be read before attempting to use

the disk drive in order to avoid any problems that may be

encountered during the use of your MSD SUPER DISK DRIVE.

FIGURE I.I. MSD SUPER DISK DRIVE TECHNICAL SPECIFICATIONS

r*************************

STORAGE (NOTE 1)

Total Capacity

Sequential

Relative

Directory Entries

Blocks

Tracks

Sectors

Bytes

Diskettes*

174848 oytes per diskette

168656 bytes per diskette

167132 bytes per diskette

65535 records per file

144 per diskette

683 total per diskette

664 available per diskette

35 per diskette

17 to 21 per track

256 per sector

Standard 5-1/4", single

sidedf single density

NOTE 1: The SD-2 contai- 3 two disk drive mechanisms and can

therefore handle two times tna above capacities (One for each

diskette)•

SOFTWARE

16K Byt-js Operating System

4K RAM buffer area (6K for the SD-2)

Microprocessor bised disk controller (6511Q)

Commodore Compatible Serial Bus Interface

Commodore Compatible IEEE Parallel Bus Interface

INTERFACE

Dual Commodore compatible Serial Bus

Commodore compatible IEEE Parallel Bus

Jumpers for selecting the device number

PHYSICAL

Dimensions

Height

Width

Depth

6. 2"

4.2"

13.3"

SD-1

(157 mm)

(107 mm)

(333 mm)

6.

5.

13.

2

9

3

II

II

It

SD-

(157

(150

(3 38

2

mm)

nm.l

mn)

Electrical requirements

Voltage 110 or optional 220 VAC

Frequency 50 or 60 Hertz

Pow-?r 50 Watts

1.1

CHAPTER 1

INSTALLATION INSTRUCTIONS

The MSD SUPER DISK DRIVE consists of a disk drive, power cable,

serial bus cable and this manual. Figure 1.1 should be used in the

following steps to help locate the various positions of

components.

1) Connect the power cable between the disk drive and a 110 VAC

electrical outlet. One end of the power cable has a connector that

plugs into the rear of the SUPER DISK DRIVE. The other end of the

power cable comes with a three-pronged grounded electrical plug

that should be plugged into the the wall. After plugging the power

cord into the disk drive and the wall, check to make sure that no

sounds come from the disk and the lights on the front of the drive

are OFF. If they are not, switch the power switch on the back of

the disk drive to off. Make sure that the power is OFF on all the

peripheral devices to be connected to the computero

2) Connect the disk drive to the Commodore computer. The MSD.SUPER

DISK DRIVE has two possible methods of being connected to the

computer. When using a VIC 20 or Commodore 64, the disk drive can

be connected by means of either the serial bus cable or if a CIE

or VIE cartridge is being used, by means of an optional PET - IEEE

bus cable. All other Commodore computers should be connected using

an optional PET - IEEE bus cable. Follow the appropriate

instructions below for either serial or parallel connection.

a) Serial Bus Interface Connection - The MSD SUPER DISK DRIVE

comes with a serial interface cable that has a 6 pin DIN

type connector on each end. One end is plugged into the

Commodore 64 or VIC 20 while the other end is plugged into

either of the two serial connectors on the back of the disk

drive. When connecting more than one disk drive and/or

printer on the serial bus, use the other available DIN

socket on the back of the disk drive to 'daisy chain1 the

devices together. The disk drives should be the first

devices connected to the computer if more than one device is

to be used in tha 'daisy-chain1. Make sure the power is off

to all devices before connecting cables.

b) Parallel Bus Interface Connection - The MSD SUPER DISK DRIVE

/—s also features an IEEE parallel bus interface for computers

that are equipped with that interface configuration. The

following computers have the IEEE interface instead of the

serial .

Series 2001 (with BASIC 3.0)

Series 3000 (with BASIC 3.0)

Series 4000 (with BASIC 4.0)

Series 8000 (with BASIC 4.0)

In addition the Commodore 64 and VIC 20 can be used with the IEEE

parallel interface when equipped with the appropriate IEEE adapter

cartridge such as the CIE and VIE manufactured by MSD. The use of

the IEEE interface provides for a significantly faster data

transfer rate over the serial interface. In order to use the IEEE

interface an optional IEEE cable must be purchased. The cable

connecting a disk drive to the computer is referred to as a PET -

IEEE cable and is available from MSD or dealers selling Commodore

peripheral products* If more than one drive or printer is to be

connected ('daisy-chained1) to the IEEE bus, then an IEEE - IEEE

cable will be needed between each of the devices. Disk drives

should be connected to the computer first when 'daisy-chainingB

devices together. Again make sure all power is OFF to the devices.

Connect the flat edge-connecter type cable end to the computer

with the connector lettering facing up and the IEEE type connector

to the rear of the disk drive. Additional IEEE devices can be

connected by plugging 'piggyback1 onto the back of the MSD drive

cable and then to the other IEEE device.

When using more than one disk drive, it is necessary to change the

device number of one of the drives. Chapter 5 covers the procedure

for changing the drive device number through software or hardware.

FIGURE 1.1. CONNECTOR LOCATIONS ON THE MSD SUPER DISK DRIVE

POWER SWITCH

FUSE

POWER RECEPTACLE

SERIAL CONNECTOR

PARALLEL IEEE CONNECTOR

SERIAL CONNECTOR
u

2. 1

CHAPTER 2

OPERATING INSTRUCTIONS

After the MSD SUPER DISK DRIVE has been properly connected to the

computer and AC outlet, the system is ready for operation.

Specific procedures should be followed each time the system is to

be powered ON or OFF. The following procedures should be strictly

followed:

a) Make sure no diskette is in the drive at the time that power

is turned ON or OFF.

b) Follow the precautions explained in the box on care of

diskettes.

c) Turn ON all peripheral devices before turning ON the

computer. The computer contains circuitry that resets all

peripherals on power-up making sure that they are ready for

operation.

d) Make sure the top light (LED) on the disk drive glows green

after the computer has been powered ON. If for some reason

the light flashes for more than five seconds, the power

should be turned OFF. Try the procedure again. If the top

LED still flashes, the power-on self tests have found a

failure within the MSD SUPER DISK DRIVE. The number of times

that the LED flashes continuously between pauses will

indicate what has failed in the drive. The following table

indicates which faulty ccnponent is associated with the

respective number of flashes:

Number of Flashes Component

1 Microprocessor U7

2 RAM Ul

3 RAM U2

4 RAM U3

5 ROM U5

6 ROM U6

7 Drive Mechanism

If the LSD flashes with a continuous flash with no pauses, the

disk drive may be able to be reset under software control to clear

the error condition. The following instruction can be entered from

the keyboard to reset the disk drive:

OPEN 15,8,15,"UJ":CLOSE 15

NOTE: The dual disk drive (3D-2) powers up in a DRIVE 0/DRIVE 1

configuration as device number 8 unless the user has reconfigured

the hardware of the disk drive as explained in Chapter 5. The SD-1

will only respond as DRIVE 0 but the device number can be changed

from the factory configured device number 3 as explained in

Chapter 5. The SD-2 will nave the green LED on and both DRIVE 0

and DRIVE 1 LEDs will be off iff the drive is ready for operation.

If the above command does not cause the LSD to stop flashing, the

2. 2

u
disk drive or, in the case where more than one peripheral is

connected to the computer, some other peripheral is defective.

Remove any other peripherals from the bus to determine where the

failure has occurred. If the disk drive still fails, return it for

repair or replacement.

If the disk drive LED never comes on, some failure in the power

supply has occurred. After turning off all equipment and

unplugging the disk drive from the AC outlet, check the fuse to

make sure it is good. If the fuse continuously blows or no problem

can be found, return the disk drive for repair or replacement.

After the LED on the disk drive is green, the drive is ready for

use. The disk drive uses a rotating lever to lock the diskette

inside the drive. When the lever is across the diskette opening,

diskettes cannot be removed or inserted. Gently turning the lever

90 degrees (open position) will allow insertion or/removal of a

diskette. The disk drive will not operate with the lever in the

open position.

CARE OF DISKETTES *

Diskettes contain valuable data that can be easily destroyed *

if proper precautions are not used. The following steps will *

help to protect the diskettes and the data that is on those *

* diskettes : *

* *

* 1) Keep the diskettes away from any source of magnetic *

* fields such as magnets, motors, etc. *

* 2) Keep the diskette in the protective jacket when it is not *

* in the disk drive. *

* 3) Do not touch the diskette surface that is present in the *

* opening of the disk. *

* 4) Do not bend or fold the diskette and do not write on the *

* diskette or the diskette jacket if a disk is stored in *

* the jacket. *

* 5) Do not expose the diskette to heat or sunlight. Because *

* computers and peripherals often get quite warm, they can *

* harm diskettes if the diskette is left on the computer or *

* peripheral. *

* 6) Always insert the diskette into the disk drive carefully *

* making sure the power is ON before inserting or removing *

* a diskette. *

Examine a diskette at this time to become familiar with the

physical characteristics of the diskette. Especially read the Csre

of Diskettes box above. Figure 2.1 points out the important areas

of the diskette.

The wr ite-protect notch on the diskette should be pointed down

2. i

when inserting the diskette into the disk drive. After inserting

the diskette into the drive, tarn the lever on the front of the

disk drive until it covers the diskette opening. The lever should

turn freely. If it does not, do not force the lever. The lever has

stops to prevent it from turning more than 90 degrees and the

lever will not close correctly if the diskette is not inserted

completely into the drive. Remove the diskette and reinsert it if

the lever does not close easily.

FIGURE 2.1. DESCRIPTION OF DISKETTE

DRIVE 0

DRIVE 1 LEVER

WRITE-PROTECT NOTCH

Before actually using the MSD SUPER DISK DRIVE it is helpful to

understand some of the terminology used when working with

computers and data. The next section deals with an explanation of

some of the more common terms. This section is more for the

newcomer to computers and disk drives but should be reviewed by

the advanced programmer also since some terms have been used

differently in various application.

DISK OPERATING SYSTEM - The disk operating system is the program

within che MSD SUPER DISK DRIVE that allocates storage on the

diskette as it is needed, locates the desired data on the diskette

and maintains all of the operations concerned with -?omputer-disk

communications and disk-diskette communications.

DIRECTORY - Tha directory is a list of all programs and other

files that have been stored on a particular diskette. The

directory is maintained by the disk drive on the diskette itself

and is updated every time a program is saved or a file has been

opened for writing. Each diskette can have up to 144 entries in

the directory. The directory listing also contains a number next

to each file which indicates how many blocks' of diskette are taken

up by that program. The last line of the directory listing

2. 4

indicates how many blocks are still available on the diskette for

additional programs or data files.

BAM - The BAM (block availibility map) is a place physically

located in the center of the diskette that is used by the disk

operating system to determine which blocks of the diskette have

been used and which are available for additional storage. Each

time a program is saved or file is closed to the diskette, the

operating system checks the BAM to see what is available. After

the program is saved or the file is closed, the BAM is updated to

reflect the diskette space that has been used. If the diskette

does not have enough space for the file the LED on the front panel

will flash and an error message will be generated.

BLOCKS - Each diskette is divided into 683 blocks at the time the

disk is formatted. Blocks have no relationship to programs or data

files other than the fact that a program or data file will always

be at least one block in length. Instead/ a block is used as a

measure of the capacity of the disk. Each block represents 256

bytes of data (this is the same size as a sector) . Of the 683

blocks of storage on each diskette, 19 are used by the system for

things like the directory and BAM. The remaining 664 blocks are

available for the storing of programs and data by the user.

TRACKS - Tracks are physical divisons on the diskette that contain

data. A track is a ring around the diskette that contains a fixed

number of sectors within that track. Each groove on a phonograph

record would be similar to a track on the diskette. As the

diskette head moves along the surface of the diskette it stops at

a track specified by the disk operating system based on the

location of a particular file on the diskette. The tra^k closest

to the outside of the diskette is the first track and also the

largest track. The tracks decrease in size as ttiey move towards

the center of the disk. Each diskette is divided into 35 tracks.

SECTORS - Sectors are ~he smallest divisible section of the

diskette for storage. Each sector (or block) is 256 bytes in

length. Each track will contain from 17 to 21 sectors depending on

whether the track is close to the outside or the inside of the

diskette. Since the outside tracks have a larger circumference,

more sectors can be stored on those tracks. Only 254 bytes of each

sector can be used for actual data storage. The other two bytes

are used to point to the next track and sector of the file or to

indicate the end of the file.

FILES - Where tracks and sectors represent the physical storage of

data on the diskette, files represent the logical storage of data

on the diskette. The disk driva itself does not care what data is

stored on the disk but the data must be stored in a manner that

will allow the user to transfer the data from the disk to the

computer in the same way as it was first stored to the disk. For

this reason, the disk operating system maintains the data in the

form of files.

2. 5

WRITE-PROTECT - Each diskette has the ability to be protected so

that data cannot be inadvertantly written to the diskette. This

protection is accomplished by covering a notch on the diskette

known as the wr ite-protect notch (See Figure 2.1). If this notch

is covered and an attempt is made to write data to the diskette,

an error will be generated.

The MSD SUPER DISK DRIVE is now ready for operation. Because the

MSD drive is a smart peripheral, it recognizes a large number of

commands. These commands have been broken into several different

sections to make for easier understanding and reference. The first

section deals with the most frequently used commands while the

second section explains the utility commands that are available

for the user. The last section allows the user to take advantage

of the advanced commands that are available within the MSD SUPER

DISK DRIVE. Be sure and read Section 2.1 since a number of special

features and rules are explained as well as the commands

themselves.

SECTION 2.1 - Frequently Used Commands

The most frequently used commands are those commands that will

/"■■n load and save files on a disk that has already been formatted.

Prepackaged programs fall into this category but any new disk that

has never had anything stored on it will have to be formatted

before it can be used. Refer to Section 2.2 of this chapter for

the appropriate utility commands for initializing and formatting a

diskette.

LOAD COMMAND; LOAD <program name>,<devicet #>,<secondary address>

Purpose: Getting a program from the diskette into the computer

memory

The disk drive responds to certain commands that must be carefully

entered in order for the commands to operate correctly. In this

case, the command is LOAD which will transfer a program from

diskette to the computer memory. The program on diskette is not

altered. The program name can be a string variable or a filename

that has been enclosed in quotes. The string variable must have

been defined in an earlier statement. The < and > symbols are not

a part of the command. They serve to indicate that the programmer

needs to fill in the portion of the command that is inside those

symbols. The following example is a LOAD with a string variable

for the program name:

LOAD A$,B

() where A$ has bean previously defined as a file that is in the

directory. Notice that B must be a variable that has been defined

as 8 if the device number has not been changed- The example below

illustrates the more common method of specifying a filename inside

of quotes:

2. 6

u

LOAD M EXAMPLE11, 8

Notice the command above is LOAD which tells the specified device

to bring a file into the computer. The actual file name to be

loaded into the computer is specified inside the quotation marks.

This file name will be the same as the name found in the directory

(see next paragraph for the method of obtaining a directory)

unless some special pattern matching techniques are used as will

be explained later. The 8 specifies that the file is to be loaded

from the MSD SUPER DISK DRIVE. All commands are terminated by

pressing the RETURN key in order for the computer to know the

command is ready to be processed.

The commands are directed to the disk drive by specifying the

device number in the command. The device number like the program

name can be a variable or a fixed value. The NSD SUPER DISK DRIVE

comes configured for the device number to be 8 although this can

be changed in software or hardware (See Chapter 5). The secondary

address is optional and can be a variable or a fixed value.

Specifying a 0 or not specifying a secondary address at all will

load the program to the start of the BASIC memory area of the

computer. Specifying a 1 for the secondary address will load the

program to the same location that it was saved from (See the {^m_J
instructions for the SAVE command). Unless specially instructed,

prepackaged software does not need a secondary address.

In order to examine the directory of a iskette, the directory

must be loaded just as any program would be. The syntax for

loading a directory into the con/puter is:

LOAD "$0fl,8

Notice that the directory is designated as $0 inside the quote.

Actually the 0 is only a designator to specify which disk drive in

a dual disk drive configuration is being used when both drives

have tae same device number. The SD-1 is a single drive unitf and

it is not necessary to specify the drive number in this case. It

is as good practice however to always precede a file name with the

0: since many operations must have the drive number specified in

order to produce the desired results. Tha SD-2 is a dual drive

unit and as such, responds to both a 0 and a 1 for the drive

number. If no number is specified after the $f both directories

will be loaded into the computer. If only the directory of a

particular drive number is desired, then put the desired drive

number after the $. Loading of the directory will erase any

program that is currently in the computers memory.

After entering a LOAD command, the disk drive will turn on and try I)

to find the file on the disk. The computer will display: ^^

SEARCHING FOR specified program name

If the program is not found an error message will be generated and

the LED will flash on the disk drive. If the file is found, the

2. 7

computer will display:

FOUND specified program name

LOADING

If the file successfully loads into the computer, the computer

will respond with:

READY

Any time the computer is finished with an operation, it will

respond with READY and a flashing cursor. This indicates that

additional commands can now be executed such as LIST or RUN, If

the directory has been loaded, it can be displayed by using the

LIST command followed by a RETURN key. Programs can be executed by

entering the RUN command followed by a RETURN key.

It is possible to use some pattern matching techniques or wild

cards when loading files from the disk. Pattern matching is a

technique of using a single special character to replace some

number of characters in a file name. The special character is an

*• Below are some examples of pattern matching and their

appropriate explanation:

LOAD "0:*",3

The above syntax will load the first file on the diskette. If the

0: is left off, the last program accessed by the drive will be

loaded unless no file has ever been accessed. In that case, the

first file of the program will be loaded. This command must be

carefully used. If a file has been previously loaded from a

diskette and a new diskette is inserted that does not have that

previous file on it, using the * by itself inside the quotes in

the LOAD command will require the disk to be reset since it will

not find that previous file.

LOAD "0:TE*",8

The above example will load the first file in the directory that

begins with TE.

Pattern matching can also be used in searching the directory. For

example, the following command will find all files on drive 0 that

begin with a T:

LOAD "$0:T*",8

By entering a LIST followed by a RETURN, only those files on the

diskette that begin with a T will be listed.

:Another method of loading files into the computar involves the use

of a wild card. Just as some cari gam-as allow a card to be used to

represent any other card, the question mark '?) can be used as a

2. 8

u

wild card in the file name. The following examples indicate some

of the uses of a wild card:

LOAD "OrTE??"^

In the above case, the disk drive will look for the first file on

drive 0 of the disk that has four letters and begins with TE.

Notice that the disk will not care what the last two letters of

the file are. If three files in the directory are called TEX,

TEST, and TEXT in that order, the above command will load the

program TEST (the program must be four letters long) . Any letter

can be replaced by a wild card.

The wild card can also be used for displaying certain directory

entries. For example :

LOAD "$0:TE?T",8

will find any files in the directory of drive 0 that are four

letters long and contain TE for the first two letters and T for

the last letter.

SAVE COMMAND: SAVE <program name>f<device #>

Purpose: To put a copy of the program in the computer memory onto

the diskette that is in the disk drive.

The syntax for the SAVE command is very similar to the LOAD

command. The program name can be a string variable or an actual

file name inside of quotation marks. The device number may be a

variable or a fixed value and should be 8 unless the device number

has been changed. The secondary address is not used. The program

will be saved from the start of the BASIC memory area to the end

of the program unless a file is already on the disk that has the

same file name or there is not sufficient space on the disk. If

either of the last two conditions occur, the LED will flash

indicating an error has occurred and an error message will be

generated (See Appendix B for an explanation of error messages) ,

It is possible to replace a file on the diskette even if a file by

that name exists on the diskette. This is common when a program is

loaded, modified and then must be resaved over the old file. One

possible way is to erase (SCRATCH) tha old file and then SAVE the

new file, but that is not very convenient. Instead of erasing the

file, the @ character can be used to tell the disk drive to

replace the existing file on the diskette with the program in the

computer memory using the same file name. The syntax for replacing

a file on disk with the program in the computer memory is:

SAVE "90:prog ram " "

An example of the command would be:

2. 9

n

SAVE "§0:TEST",8

This command will find the program TEST on drive 0 of the diskette

if it exists and deletes it from the directory and BAM. A new

entry is then created with the same file name of TEST and the

program in memory is saved under that file name.

VERIFY COMMAMD; VERIFY <progran name>,<device number>

Purpose: The VERIFY command can compare an existing program on

diskette with the program in computer memory to make sure they are

identical.

This command is very useful for comparing a program in memory with

one that is on disk to see if they are the same or for making sure

that a program in memory has been stored to disk in its current

form. The VERIFY command operates just like the LOAD command

except the program is not loaded into the memory. Instead, it is

compared to the contents of memory. The command must have the

program name in the form of a variable string or an actual file

name inside of quotes. The device number can either be a

predefined variable or a fixed value (generally 8).

SECTION 2.2 - Utility Commands

The MSD SUPER DISK DRIVE contains a number of commands that are

used to perform special tasks within the disk drive. Some of these

tasks would be formatting a new diskette so that programs can be

stored on them, erasing a program from the diskette or copying a

program from one file name to another. These types of operations

are called utilities. In order to use the utility commands, it is

necessary to first establish a channel of communications between

the disk drive and the computer. This channel of communications

allows the computer and the disk drive to exchange information.

The syntax for opening a channel is:

OPEN <file #>f<device #>,<secondary address>,<text string>

The file number can be any number between 1 and 255 but numbers

greater than 127 may cause a linefeed to be sent after a return

character. This number is assigned by the user and is used

throughout communications between the computer and the disk to

identify which file is being accessed.

The device number is 8 unless it has been changed in software or

hardware.

Th^e secondary address can be any number between 0 and 15, but some

of the numbers are predefined. Secondary addresses 0 and 1 are

reserved for tha operating system during loading and saving.

Secondary address 15 is reserved for the command channel as will

2.10

u

be explained later. The remaining secondary addresses are

available for the user to transfer data to or from fileSo The same

secondary address cannot be used when multiple files are opened

and it is not possible to open the same file number with different

secondary addresses.

The text string is a string that will cause a file on the disk by

that name to be created, if it does not exist, and opened to allow

transfer of data to or from that file on the diskette. A file on

the disk cannot be opened unless the file name is specified in the

text string• For the utility commands, the text string can be the

actual command or it can be omitted completely.

Once a file has been OPEMed^ it will remain OPEN until a CLOSE

command is executed for that channel, the drive is initialized, or

an error condition causes the system to think the file is closed.

If a file is already OPEMed and an attempt is made to OPEN it

again, a "FILE OPEN ERROR6 will be displayed.

Variables can be used for any of the portions of the OPEN command

as long as they have been predefined • Some examples of OPEN

statements are given below:

OPEN 5, 8, 5,"TEXT11 <~ »

OPEN 15,8,15,"10"

OPEN A,BfC,A$

Notice that the second example above is an example of a command .

being sent to the disk drive because the command channel is being

used. The command is placed inside of quotes as a text string.

It is possible to open the command channel without sending the

text string message. The text string can be sent to the disk with

the use of a PRINT# command. The syntax for the PRINT! command is:

PRIMT#<file |>,<text string>

The file number must be opened before using this command or an

error will result. The text string can be a variable or text

inside of quotes. In the case of the command channel, it would be

a command. In the case of a channel that has been opened for data

transfer, it will send that text string to the file that has been

opened and it will be stored on the diskette. The explanation of

transferring data using the PRINT# command will be described in

more detail later.

The command channel (file number 15) has its own set of commands

for accomplishing different utilities. These commands are

transfered as mentioned above through the OPEN command or by the

PRINT# command after the command channel has been opened. The

syntax for sending the utility commands to the disk is:

2.11

OPEN 15,8,15,<command>

unless the command channel has already been opened in which case

the syntax would be:

PRINT#15,<command>

The following commands are commands that can be recognized by the

MSD SUPER DISK DRIVE.

INITIALIZE COMMAND; •INITIALIZE0- or

■10"

Purpose: To revert the disk drive back to its original condition

when it was powered up.

The INITIALIZE command should be used when the disk drive has

encountered an error that prevents it from performing any further

operations. Because this command effectively "restarts11 the

computer, any operations or files that were open or in progress

are terminated. Using a 1 instead of 0 will initialize drive 1 on

the SD-2. The following formats will initialize the drive:

OPEN 15, 8,15f"I011 or

OPEN 15,8,152PRINT#15,"I0"

NEW COMMAND; -NEW0:diskette name,id" or

NN0;diskette name,id"

Purpose: Erase the contents of the diskette and make it usable by

the disk drive.

The diskette name is a user defined name that is placed on the

disk for the convenience of user identification. The id is a two

digit alphanumeric identifier that is placed in the directory as

well as every block on the diskette. The id is used to make sure a

diskette has not been changed in the course of writing to the disk

(unless the id is the same on both disks) . The id should be

different for each diskette formatted or errors can be introduced

onto a diskette if it is changed without initializing the disk

drive. If 1 is substituted for 0 in the above command, the

diskette in drive 1 will be formatted on the SD-2.

Any time a diskette is used for the first time (i.e. nothing has

ever been stored on the diskette) it must be formatted so that the

disk drive will recognize the disk. If a diskette has become

unusable because of some diskette failure, it must be formatted

again. The NEW command will erase the entire contents of the

diskette and place the correct timing and block marks on the

diskette. The BAM and directory are also created. The NEW command

is used as follows:

2.12

u
OPEN 15,8,15,nN0:TEST DISK,MS" or

OPEN 15,8,15,"N0:PRACTICE,88"

If a diskette does not need to be reformatted, but it is desirable

to erase the contents of the diskette, the same command can be

used except the id is left off of the command:

OPEN 15,8,15,lfN0:TEST DISK" or

OPEN15,8,15:PRINT#15,"N0:PRACTICE"

SCRATCH COMMAND: "SCRATCH0:file nane" or

"S0:file name"

Purpose: The SCRATCH command is used to erase a file or files from

the diskette and thereby make additional space on the diskette.

The file name represents the directory file that is no longer

desired on the diskette. Substituting a 1 for a 0 on the SD-2 will

erase the specified file or files on drive 1. The following

examples illustrate the SCRATCH command:

OPEN 15,8,15,IIS0:GOAWAYM or

OPEN 15,8,15:PRINT#15,MS0: GONE11

It is possible to erase one file at a time or a number of files at

one time. In order to erase more than one file at a time pattern

matching and/or wild cards can be used. It is also possible to

erase more than one file by using the syntax above and adding each

file name to be erased after the program name with a comma

seperating the file names. For example:

OPEN 15,8,15:PRINT#15,lfS0:TEXTf 0 : TEST, 0 : MUSIC11

would erase the three files TEXT, TEST and MUSIC from the

diskette•

It is also possible to verify the number of files erased by

reading the error channel after scratching the files (See Appendix

B for an explanation of reading the error channel) • The error

channel will put the number of files erased in place of the track

number.

COPY COMMAND: "COPY0:newfile=0:oldfile" or

"C0:newfile=0:oldfile"

Purpose: To copy any program or file to another program or file on

the diskette.

The COPY command is used to creue a duplicate of an existing

program or file on the diskette under a different name. In the

command, newfile would represent the name of the file to be

created while oldfile would be the file that is to be copied.

Files can be copied onto the same diskette or in the case of the

2.13

SD-2 from one diskette to another. It is possible to create a file

that is the combination of several files using the COPY command as

given below:

"C0;newfile=0;oldfilel,0;oldfile2#0;oldfile3"

The above command would combine oldfilelf oldfile2 and oldfile3

into one file on the diskette with the name newfile. Only data

files can be successfully merged. If BASIC programs are combined,

the BASIC within the computer cannot recognize anything except for

the first program because of certain data stored at the end of a

program file to indicate the end of a BASIC program. Examples of

copying one program to another would be:

OPEN 15, 8,15,"C0:DUPLICATE=0: ORIGINAL11

OPEN 15,8,15:PRINT#15,"C0:BACKUP=0:MASTER

OPEN 15,8,15:PRINT#15,"C1:DUPLICATE=0:ORIGINAL (SD-2 only)

An example of combining four files into one file using the COPY

command is:

OPEN 15,8,15,"C0:BIG=0:TEXAS,0:GIANT,0:OCEAN,0:ELEPHANT

RENAME COMMAND; ■RENAME0;newnaue=0:oldname" or

"R0:newname=0:oldnaaes

Purpose:.To change the name of a program or file in the diskette

directory.

Occasionally, it is desirable to change only the name of a program

or file on the diskette. The RENAME command makes this possible.

The newname is the name that you want the existing file on the

diskette (oldname) to be changed to. Files can be renamed on drive

1 if so specified on the SD-2. It is not possible to RENAME any

files that are currently opened.

Some RENAME command examples are as follows:

OPEN 15,8,15,"R0:NEWFILE=0: OBSOLETE11

OPEN 15,8,15:PRINTJH5,"R0:REVISED=0:ORIGINAL

VALIDATE COMMAND; *VALIDATE0" or

"V0"

Purpose: To clean up th~ diskette after it has been used for a

long period of time.

After a diskette has had files repeatedly saved and erased, the

diskette accumulates a number of small gaps. The VALIDATE command

will clean up the diskette to remove many of these gaps and

provide more storage space. In addition, any data files which were

2.14

opened but were not properly closed will be erased from the

directory providing additional storage area. Specifying a 1

instead of a 0 will validate drive 1 on the SD-2. The VALIDATE

command is executed as follows:

OPEN 15, 8,15fllV0lf

or

OPEN15,8,15:PRINT#15,"V0"

CAUTION: If random files (these are special types of files the

user can create and are explained in CHAPTER 3) have been created,

they will also be removed from the diskette when this couand is

executed•

CLOSE COMMAND: CLOSE<file #>

Purpose: To close a channel of communications that has formerly

been opened.

The file number is that file number that was used in the OPEN

statement. Once a file that has been opened is no longer needed

for data transfer, it must be properly closed. Closing the file

causes the directory and BAM to be correctly updated. If the file

is not properly closed, all data associated with that file will be

lost.

It is very important that the data files be closed before the

error channel is closed. If the error channel is closed before the

data files, the other files will be closed by the disk operating

system. A file is open as long as the LED on the disk drive is

red. On the SD-2, an LED exists for each drive, and these LEDs

indicate when a file on that given drive is open. If BASIC is

being used, it will still think the files are open and will try

writing to them. The opposite problem can also happen. If the

BASIC program leads to an error condition, all files will be

closed in BASIC but not on the disk drive. If this condition

occurs, the following command should be entered:

CLOSE15:OPEN15,8,15:CLOSE15

in order to reinitialize the disk and retain the filas that were

opened.

SPECIAL DUAL DISK DRIVE COMMANDS

The SD-2 has a special duplicate command available for making fast

copies of diskettes. Instead of performing a file copy like the

COPY command, the DUPLICATE command copies each block from one

diskette to the other. The DUPLICATE command also formats the

destination disk before duplicating. The purpose of this command

is to create backup programs, however, the DUPLICATE command will

u

2.15

not copy diskettes that are copy-protected. The DUPLICATE command

will copy diskettes that have been made on Commodore models 2031,

4040, 1540, or 1541. The format for the DUPLICATE command is:

DUPLICATE COMMAND "DUPLICATE<dest drive>=<source drive>"

or "D<dest drive>=§ource drive>"

Purpose: To copy the entire contents of a source diskette to the

destination diskette.

It is important to notice the order of the copy because the

destination diskette is formatted and all previous data is lost.

Placing write-protect tabs over the diskette to be copied will

prevent inadvertantly destroying a good disk.

An example of the DUPLICATE command to copy from drive 1 to drive

0 is:

OPEN 15,8,15:PRINT#15,"D0=1"

u

u

u

3. 1

n

CHAPTER 3

FILE DATA HANDLING

As the user gets into more advanced applications, it becomes

necessary to be able to store and save more than just programs.

The MSD SUPER DISK DRIVE provides several methods for storing data

on the disk. The next three sections explain the different types

of files that can be used when using the MSD SUPER DISK DRIVE.

SECTION 3.1 - SEQUENTIAL FILES

Sequential files are those files that are stored and read as their

name implies, sequentially from beginning to end. There are

basically three different types of sequential files that can be

used on the MSD SUPER DISK DRIVE. The first type of sequential

file is the program file which is abbreviated in the directory of

the diskette as PRG. The program file is the only sequential file

type that can be loaded. BASIC uses sequential program files when

storing or reading programs. The second and third types of

.—. sequential files are designated as sequential (SEQ) and user (USR)

' ' respectively. These two file types are for data handling. The

sequential files must be opened just as the command channel was

opened in the last chapter in order to read or write to the file.

The syntax for opening a sequential file is:

OPEN <file #>,<device #>,<data channel>,"DR:file,type,direction"

The file number is a user assigned nunber between 1 and 255 or a

predefined variable (usually the same number as the data channel

for ease of remembering^ that refsrs to the particular file that

has been selected for any data transfers. The device number is

usually 8 or a predefined variable. The data channel is a number

between 2 and 14 that the user assigns as the channel that will be

used for communicating. DR represents the drive number which is 0

for the SD-1 and either 0 or 1 for the SD-2. The file is the file

name on the diskette to be opened. If the file does not exist it

will be created in the case of a write or create an error

condition in the case of a read (See Appendix B for an explanation

of the error messages) . The type represents the file type to be

opened (PRG, SEQ, USR). The file type is abbreviated to its first

character in the OPEN statement. The direction is either read or

write which is designated as R or W respectively in the OPEN

command. When a file has been opened, the LED relating to the

particular drive will be rad to Indicate a file is open. The LED

will remain red until all files on that drive are closed. Some

{"**) examplss of opening of sequential files, are:

OPEN 5r8f 5f"0:DATAFILErSrR11

OPEN 2,8,2,"0:TEXT,P,WIf

3. 2

u
OPEN A,BfC,"0:"+A$+",UfRlf

Just as the SAVE command has the capability of replacing an

existing program, any existing program that has been opened for

write can replace the existing program if the program name is

preceded by the § symbol. For instance:

OPEN 8,8,8,W@0:NEWONE,S,W"

will replace the existing file called NEWONE with the new data to

be written.

Once a file has been opened for reading or writing, three

different commands can be used to actually handle the data

transfer. These three commands are the PRINT#, INPUT* and GET#.

The PRINTf command is used for writing to the diskette while the

INPUT* and GET# are used for reading from the diskette.

PRINTffile #,data

Purpose: The PRINT# command is used for writing data to the

diskette.

The PRINT# (no spaces are allowed between the PRINT and the #

sign) command, as explained in CHAPTER 2, is used to direct any

output to the file that has been opened. The file number is that

file that has been opened by the OPEN command. The data consists

of variables and/or text that has been enclosed inside of

quotation marks. The PRINT# command works like the PRINT command

in BASIC. Any commas that are used to separate items on a line

will result in spaces being stored to the diskette. Semicolons

will keep spaces from getting stored to the diskette when used to

separate items on a line. The absence of either a comma or

semicolon will cause a carriage return (CR) to be stored on the

diskette at the end of a PRINT* command.

Any data that is sent to the diskette using the PRINT* command

will be stored sequentially byte by byte with all spaces, carriage

returns and any other special character stored. As an example,

consider the following program:

10

20

30

40

50

60

The

1

T

A$="THIS

B$="TEST"

OPEN 8,8,

IS

8,
PRINT#8,A$,

CLOSE8

END

data wil

2 3 4

HIS

1

5

A"

"0:

B$"

TEST,S

OF THE

actually

6

I

7 8

S

,WB

DISK"

be sto

9 10

A

id in the following form:

11 12 13 14 15 16 17 18 19

3. 3

20

T

21

E

22

• S

23

T

24

0

25

F

26 27

T

28

H

29

B

30 31 32 33 34 35

D I S K cr

The numbers represent the character position in the sequential

file. The cr represents a carriage return which is inserted at the

end of any PRINT# statement unless a semicolon or comma is used at

the end. After the file is closed, a marker is placed at the end

of the file.

The comma, carriage return and colon have special significance

when stored to the disk,. When used inside a string, they will be

stored to the diske When used as a separator between fields, the

comma inserts spaces, while the carriage return and colon end the

field and store a carriage return to the disk. For.example, the

statement:

PRINT#8,wN0, THANK YOU"

will put the comma inside the quotes onto disk. The statement:

PRINT#8,IfN0lf ,WTHANK YOU"

will cause spaces to be inserted between NO and THANK YOU instead

of a comma. The importance of using the comma, carriage return,

and colon on the diskette becomes apparent when using the INPUT#

or GET# command to retrieve the data from the disk as explained

below.

GET$ COMMANDS GET#<file #>*<variable>

Purpose: To get data from the disk a byte at a time.

From time to time, it will be desirable to get data from the disk

a byte (or character) at a time. The GET# command is used for that

purpose. This command is useful because all data that is on the

disk is read, including the comma, carriage return and the colon.

The file # is the file number that has been opened while the

variable is a single variable or a list of variables separated by

commas. The variables can be string or numerical variables but

string variables are recommended. If string data is encountered on

the diskette when a number was requested, a BASIC error statement

is generated. Since a string variable can be a number or

character, it can always be read. Some examples of the GET#

statement are:

GET#8, A$

GET#8, A$,B$,C$

The GET# statement is especially useful when the actual data

content or structure on the disk is not known. Since every

3. 4

o

character is received, disks that have had portions destroyed can

be examined to possibly recover data that would not normally be

recovered. For situations where a group of data is to be read and

the data structure is known, the INPUT! statement is better

suited. An example of the use of the GET# command is given below.

This program will read the contents of the file that was stored in

the program example for the PRINT* command above and display it on

the screen.

10 OPEN 8,8,8,"TEST"

20 GET#8,A$:PRINT A$;

30 IF ST=0 THEN 20

40 CLOSE 8

50 END

The ST in line 30 is the status byte that is in the computer. This

byte will be 0 until the end of the file is reached.

IMPUTj COMMAND: IHPOT#<file #>,<variable>

Purpose: To retrieve data from the disk in groups rather than a

character at a time.

The file # is the file number that was used in the OPEN command.

The variable is a single variable or multiple variables separated

by commas. The variables can be strings or numeric. In order to

read a group of data from the diskette, it is necessary to be able

to recognize the start and end of that group of data. This is

accomplished through the use of separators as explained in the

PRINT# section. The INPUT# command recognizes a comma, carriage

return, and a colon as a separator between data fields. If a

variable is to be read in from diskette, these separators will

determine exactly how much data will come in each time.

As mentioned before, the data can be character strings or numbers.

If the data is numeric, it is stored just as if the STR$ function

had been performed on the numeric data. Numbers are stored with

positive numbers containing a space as the first character while

negative numbers have a minus sign as the first character. An

example of the INPUT# instruction in conjunction with the PRINT#

is provided below:

10 OPEN 8,8,8,"@0:DATAFILE,S,Wlf

20 FOR A=l TO 10

':d PRINT#8,A

40 NEXT

50 CLOSE 8

60 OPEN 2,8,2,"DATAFILElf

73 INPUT#2,B:PRINT B

80 IF ST=0 THEN 70

90 CLOSE 2

130 END

3. 5

The above example will write the numbers 1 through 10 to a

sequential file called DATAFILE. Lines 70 and 80 will read the

data from the disk and print it out.

SECTION 3.2 - RANDOM FILES

Sequential files are handy when working with continuous streams of

data and program files, but quite often it is desirable to be able

to access certain data without having to go sequentially through

each byte. For this type of data, it is more desirable to use a

random access method of data storage and retrieval. Random files

provide the capability of obtaining data from within a file

without reading the entire contents of the file. Another method of

accessing data in a random fashion is to use relative files.

Relative files will be explained in section 3.3. The decision to

use random files versus relative files is determined by

considering several differences between the two methods. Random

files are generally more desirable when speed is a factor. Many

^—^ machine language programs will utilize random files because of the

') speed improvement over relative files. The problem with random

files is that the location of data using random files must be

maintained by the program using the random files while relative

file locations are maintained by the disk operating system. This

is the primary reason for the speed difference. Random files can

be more easily removed from the diskette inadvertently since the

disk operating system does not maintain those files.

Random files are files that have been written to a certain

designated location on the diskette. From the definitions given in

Chapter 2, we learned that the disk is physically divided into 35

tracks with each track containing from 17 to 21 sectors or blocks.

The following table indicates how many sectors are in each track:

TRACK NUMBER(S) NUMBER OF SECTORS (BLOCKS)

1 to 17 21

18 to 24 19

25 to 30 18

31 to 35 17

Notice that adding the number of blocks in each sector results in

a total number of 683 blocks which is the number of blocks

available on a newly formatted diskette. If you consider the 19

blocks that make up the directory on track 18 and subtract that

^^^ from the 683, the 664 bytes that remain corresponds to the amount

(^ of blocks available on a newly formatted disk as indicated by
loading and listing the directory of a newly formatted disk! By

using the random file commands it is possible to read from or

write to any block on the diskette ■■■■. s well as determine which

blocks are available for uso. The following commands explain how

to use the random file functions.

3. 6

u

OPEM COMMAND; OPEN<filef>,<device #>,<channel #>,■#" or

OPEN<£ile|>,<device #>,<channel #>,"#<buffer #>

Purpose: To open a random file for reading or writing.

The file#, device #r and channel fr have the same syntax as

sequential files with only the '#' symbol used at the end of the

command indicating that a random file is being opened. A minimum

of two channels must be opened in order to use random files. The

command channel is opened to channel 15 as was explained in

earlier sections (i.e. OPEN 15,8,15). The second channel is opened

according to the above syntax. The '#' symbol causes the disk to

allocate a 256 byte buffer for the purpose of handling the desired

block of data. If a buffer number is specified as in the second

OPEN command above, the specified buffer will be allocated to that

data channel. Ten buffers are available on the MSD SUPER DISK

DRIVE (numbered 0 through 9). An example of each OPEN command is

given below:

OPEN 8,8,8,"#"

OPEN 7,8,7,lf#3"

NOTE: Do not specify lf0:#" or lfl:#fl

BLOCK READ COMMAND;

"BLOCK-READ:"<channel |>;<drive#>;<track#>;<block#>

Purpose: To read a specific block of data from the disk.

The BLOCK-READ can be abbreviated to B-R. The file # and channel #

are the file and channel that has been opened. The track # and

block # indicate which 256 byte block is to be read. Executing

this command causes the disk drive to move the specified block of

data from the diskette to the buffer area specified in the OPEN

command. The data can be read from the buffer area using the

INPUT# and GET# commands. On!/ data that has been stored on that

particular block will be read. Any unused bytes in the block will

not be read. The sample program below indicates a method of using

the BLOCK-READ command to read the contents of block 9 on track 5

and display the contents of that block on the screen:

10 OPEN 15,8, 15

20 OPEN 8,8,8,lf#w

30 PRIN7#15,WB-R:W8;0; 5;9

40 GET#8,A$, }

50 PRINT A$; w

60 IF ST=0 THEN 40

70 PRINT"READ COMPLETE"

80 CLOSE8:CLOSE15

3.

BLOCK WRITE COMMAND:

■BLOCK-WRITE:"<channel #>;<drive|>;<track#>;<block|>

Purpose: To write a block of data to a specified location on the

disk.

The BLOCK-WRITE performs the opposite function of the BLOCK-READ

command. The BLOCK-WRITE portion of the command can be abbreviated

B-W. Execution of this command will cause the previously stored

buffer information to be written to the specified location on the

diskette. The information is transferred to the buffer through the

channel other than the command channel that has been opened. This

transfer is accomplished with the PRINT* command. The disk
operating system keeps track of how many bytes are stored into the

buffer and stores the byte count pointer into the first byte of

the block on execution of the BLOCK-WRITE. This means that only

255 bytes can actually be written to or read from the block. The

pointer takes up the first byte of the block. An example of a

routine that will write data to the same block that is read in the

BLOCK-READ example (track 5, block 9) is given below:

10 OPEN 15,8,15

20 OPEN 8,8,8,"#"

30 FOR A=l TO 30

40 PRINTI8,"TESTING"

50 NEXT

60 PRINTtl5,"B-W:M8;0;5;9

70 CLOSE8:CLOSE15

BLOCK ALLOCATE COMMAND:

"BLOCK-ALLOCATE:-<drive #>;<track|>;<block|>

Purpose: To determine if a particular block is free on the

diskette and allocate it if it is free.

As mentioned earlier, the operating system does not maintain the

diskette when BLOCK-READs and BLOCK-WRITEs are used. The user does

have the ability to mak3 sure a particular block is available by

using the BLOCK-ALLOCATE command. The BLOCK-ALLOCATE command can

be abbreviated B-A. This command makes it possible to use the

BLOCK commands with a diskette that already has files on it. By

checking the BAM, the command can determine if the specified block

has been used. Since the BAM is updated each time a file is stored

to diskette, files can be preserved. BLOCK-WRITEs do not update

the BAM and therefore will not be recognized on the diskette

unless a BLOCK-ALLOCATE command has been issued. All random files

can be retained on the diskette until a VALIDATE command is

executed. The VALIDATE command will not recognize any random file,

and should therefore never be executed on a diskette that has such

files •

3. 8

If the BLOCK-ALLOCATE command determines that the specified block
has already been used, an error message will be generated (See
Appendix A for error message 65). The error message returns the
next available track and block found on the diskette. The track
and block returned does not get allocated unless the

BLOCK-ALLOCATE command is issued for that track and block. The

following command will allocate a block and write that block. If
the block is already used it will write to the indicated available
block.

10 OPEN 15,8,15:OPEN 8,8,8,"#H

20 PRINT#8,MTHIS GOES INTO THE BUFFER"

30 T=5:S=9

40 PRINT#15,"B-A:"0;T;S

50 INPUT#15,A,A$,B,C

60 IF A=65 THEN T=B:S=C:GOTO 40

70 PRINT#15,"B-W:"8;0;T;S

80 PRINT"DATA WAS STORED IN TRACK:"T,"SECTOR:"S

90 CLOSE 8:CLOSE 15

100 END

Line 20 stores some data into the buffer while line 30 starts

looking at track 5 block 9. Lines 40, 50, and 60 find a block that

is available. Lines 70 and 80 actually write the buffer to the

available block and print on the screen which track and block was

finally found to store the buffer. If the program is repeated, a

different block will be used each time the program is run since

the previous occupied the earlier available block.

BLOCK-FREE COMMAND:

"BLOCK-FREE:"<drive |>;<track#>;<block#>

Purpose; To make a specified block on the diskette available for

use.

The BLOCK-FREE command will perform similar to the SCRATCH command

in that any specified block on the diskette can be made available.

Instead of actually erasing the file, this command updates the BAM

to indicate that the block is available for other files. The

following command will free Track 5 block 9 for use:

OPEN8,8,8,"#":OPEN 15,8,15:PRINT#15,"B-F:«0,5,9:CLOSE8:CLOSE15

BUFFER-POINTER COMMAND

"BUFFER-POINTER:"channelI;location

Purpose: To allow random access of information within a block.

As mentioned in the BLOCK-WRITE command, a pointer is stored on

each block of the diskette to indicate how many bytes wsra written

3. 9

into the block. This buffer pointer also points to the next

location that a piece of data is to be read from. The

BUFFER-POINTER command makes it possible to move the pointer to

any location within a given block making it possible to locate any

byte inside a block. This command makes it easier to maximize the

use of the space in the blocks. The BUFFER-POINTER in the command

can be abbreviated B-P. As an example, the 32ND byte in the buffer

can be pointed to and retrieved by the following program:

10 OPEN 15,8f15:OPEN 8,8,8,"#"

20 PRINT#15f"B-P:"8;32

30 GET#8,A$:PRINT A$

40 CLOSE 8:CLOSE 15

USBR1 COMMAND:

"Ul:"<channel#>;<drive#>;<track#>;<block#>

Purpose: To read a full 256 byte block from the diskette to the

buffer.

The USER1 command is almost identical to the BLOCK-READ command

n except that the USER1 command will read the entire 256 byte block

while the BLOCK-READ will only read the amount of data that has

been stored into that block as indicated by the buffer-pointer.

The USER1 command effectively forces the buffer-pointer to 255 so

that the entire block is read.

The USER commands are specially designated commands that will be

explained in more detail in the next chapter. The USER1 command is

abbreviated to Ul or UA as both abbreviations are recognized by

the disk operating system. The following example will get the

entire 256 bytes from Track 5 Block 9 and display it to the

screen:

10 OPEN 15,8,15: OPEN 8,8,8,"#"

20 PRINT#15,"U1:M8;0;5;9

30 GET#8,A$:PRINT A$;

40 IF ST=0 THEN 30

50 CLOSE 8:CLOSE 15

60 END

USER2 COMMAND

"U2:"<channel#>;<drive#>;<track#>;<block#>

Purpose: To write a block to the diskette without altering the

buffer-pointer on the diskette.

The USER2 command (abbreviated U2 or UB) is very similar to the

BLOCK-WRITE command in that it writes the contents of the buffer

to the block on the disk. The difference is that the USER2 command

does not change the buffer-pointer that is already on the diskette

when the buffer is written to the diskette. This command is useful

3.1!

when a programmer wishes to read a block of data into the buffer

and modify some of the contents by using the BUFFER-POINTER

command to find the data to be modified. The data can then be

rewritten to the diskette with the USER2 command and the

buffer-pointer on the diskette will be correct* If the BLOCK-WRITE

command were used, it would be necessary to set the buffer-pointer

to the number of bytes in the buffer before executing the

BLOCK-WRITE. The following program illustrates the use of the

USER2 command:

10 OPEN 15,8,15:OPEN 8,8,8,w#"

20 PRINT#15,IIU1:"8;0;5;9

30 PRINT#15,"B-P:II8,32

40 PRINT#8,!IA"

50 PRINT#15,"U2:fI8;0;5;9

60 CLOSE 8:CLOSE 15

70 END

The above program reads Track 5 Block 9 into the buffer (line 20).

Line 30 moves the pointer to the 32nd position while line 40

changes that byte to the character 'A1. Line 50 prints the buffer

back to the disk. Even though the buffer pointer has been altered, i j

the USER2 command makes sure the old buffer pointer is not altered ^^
on the diskette,

SECTION 3.3 - RELATIVE FILES

As mentioned in the last section, it is often desirable to be able

to access different pieces of data on a direct basis rather than

sequentially. The random files can accomplish this as long as the

programmer maintains the files in his or her own program. Relative

files are a little more flexible in that the disk operating system

maintains the data on the disk. Relative files are slower than

random files but the fact that the operating system maintains the

files often makes up for the speed difference.

Relative files have two main components. These two components are

the side sectors and the data blocks. The components are linked

together to form a complete relative file. The data blocks consist

of records that can be from 1 to 254 bytes in length. The total

number of records can be contained in as many as 720 data blocks

because the side sectors, of which there are 6, can each handle up

to 120 data blocks. The result is that each diskette can contain

up to 182,830 bytes of data in a file (120 pointers/side sector *

6 side sectors * 254 bytes per data block). Tha data block format

consists of the first two bytes specifying the track and sector of U
the next data block. The next 254 bytes are actual data. Any empty

record will have FF in the first byte with 00 in the rest of the

record. The side sectors are used to reference all side sector

locations as well as locations of the 120 data blocks relating to

that side sector. The format is:

3. 11

n

BYTE DEFINITION

0,1 Track and sector of next side sector block.

2 • Side sector number (0-5).

3 Record length.

4,5 Track and sector of first side sector (0).

6,7 Track and sector of second side sector (1).

8,9 Track and sector of third side sector (2).

10,11 Track and sector of fourth side sector (3).

12,13 Track and sector of fifth side sector (4).

14,15 Track and sector of sixth side sector (5).

16-256 Track and sector pointers to 120 data blocks.

Relative files are created the first time they are opened. From

then on that same file will be used until it is closed. A relative

file can only be erased from a file using the SCRATCH command or

reformatting the entire disk. The f@f sign which is often used

with the SAVE command as a replace and save will NOT work with

relative files. The syntax for opening a relative file is:

OPEN<file #>,<device#>,<channel#>r"<naiie>,L,"+CHR$ (record length)

The name is the name that is to be assigned to the relative file

and the record length specifies how many bytes are in each record.

The record length and L are not required on file- that already

exist on the diskette. If an incorrect record size is specified

for an existing file, an error message will be generated (See

Appendix B for an explanation of error messages) . The syntax for

opening an existing relative file would be:

OPEN<file t>f<device#>f<channel#>#*naae*

After a file has been opened, it is necessary to specify which

record is to be accessed. The command for locating the file

pointer to the correct record is:

PRINT<file #>f"P-CHR$(chan#)CHR$(rec#lo)CHR$(rec#hi)CHR$(position)

Because up to 720 records can exist in a file, it is necessary to

specify a given record location in two bytes. The rec#lo and the

rec#hi field identify the correct location of the record. The

actual formula f^r determining what to put into these two bytes is

RECORDf = record#hi * 256 + record#lo. The position represents the

actual position in a record to start the data transfer.

An example of the creation of a relative file is given below:

10 OPEN 15,8,15

20 OPEN8,8,8,H0:TEST,L,lf+CHR$(50)

3 0 PRINT#15,lfPMCHR$(8)CHR$(0)CHR$(4)CHR$(l)

40 PRINT#8,CHR$(255)

50 CLOSE8:CLOSE15

The above program will create a file called TEST that will contain

3.12

records that are 50 bytes in length. Line 30 will move the pointer

to the first position in record number 1024 (the formula is

RECORD#=256*4+0=1024). Notice that the pointer command is sent

through channel 15 while data is sent, in this case, through

channel 8. Since this is a newly created file that record will not

actually exist. Because that record does not exist an error

message (See Appendix B for error message 50) will be generated.

This error message really serves as a warning to alert you that

the record does not exist and you should not try to use GET# or

INPUT! commands. Line 40 will not only cause an FF to be written

into the 1024th record, but will also cause all records up to that

point to get initialized. All necessary side sectors and data

blocks will be created. If the disk does not have enough space for

these data blocks, an error message 52 will be generated. The last

line of the program will close the file.

If a relative file already exists, it is possible to open the file

and either expand it or access it for data transfer. The file can

be expanded but the record size must remain the same. To expand a

file it is only necessary to specify a larger number of records in

the PRINT statement like Line 30 above. An example of writing data

to an existing relative file is given below:

10 OPEN 15,8,15

20 OPEN 2,8,6,"0:TESTlf

30 GOSUB 1000

40 IF A=100 THEN STOP

50 PRINTfrl5,"P"CHR$(6)CHR$(100)CHR$(0)CHR$(l)

60 GOSUB 1000

70 IF A=50 THEN PRINT#2,1:GOTO50

80 IF A=100 THEN STOP

90 PRINT#2,"123456789"

100 PRINT#15,"P"CHR$(6)CHR$(100)CHR$(0)CHR$(20)
110 PRINT#2,"J0HN QWERTY"

120 CLOSE2:CLOSE15

130 END

1000 INPUT#!.5,A,A$,B$,C$

1010 IF (A=50) OR (A<20) THEN RETURN

1020 PRINT"FATAL ERROR: ";

1030 PRINT A,A$,B$,C$

1040 A=100:RETURN

Lines 10 and 20 open the command and a data channel respectively.

Lines 30 and 40 check for possible errors. In this case the
program makes sure the file already exists. The file pointer is

moved in Line 50 to the 100th record position. Since no records

exist at this time, an error 50 is generated. Lines 60, 70, and 80

check for the error and will create the 100 records. Line 90

prints the nine bytes of data to the first 9 locations in record

100. Line 100 moves the pointer to the 20th position in record 100

and line 110 prints the specified name into the record from that
posi tion.

3.13

It is important that data be written into the record sequentially

from beginning to end because writing data at the beginning of the

file destroys the rest of the record in the disk operating system

memory. In the example above# data could not be written between

positions 10 and 20 without destroying the name that has already

been written into position 20 and beyond.

After the data has been written to any of the records, it is

possible to read that data back at a later date. The example below

illustrates a routine that will read a particular record from a

relative file:

10 OPEN 15,8,15

20 OPEN 2,8,6,"0:TESTM

30 GOSUB 1000

40 IF A=100 THEN STOP

50 PRINT#15,WP"CHR$(6)CHR$(100)CHR$(0)CHR$(1)

60 GOSUB 1000

70 IF A=50 THEN PRINT A$

80 IF A=100 THEN STOP

90 INPUT#2,D$:PRINTD$,

100 PRINT#15,"PIICHR$(6)CHR$(100)CHR$(0)CHR$(20)
/-s 110 INPUT#2,E$:PRINTE$

1 120 CLOSE2:CLOSE15
130 END

1000 INPUT#15,A,A$,B$,C$

1010 IF (A=50) OR (A<20) THEN RETURN

1020 PRINT"FATAL ERROR: ";

1030 PRINT A,A$,B$,C$

1040 A=100:RETURN

This program will work in conjunction with the previous relative

write routine to read the record that was previously stored. Lines

10 through 80 are about the same as the last example, except the

file is expected to be on the disk or an error will result. Lines

90 - 110 actually read the record and display the contents to the

screen. Notice that the carriage return that is sent to the disk

after each PRINTf statement on the relative write routine is the

separator for each field of the record

If the file is to be written or read sequentially, i

necessary to adjust the pointer to each record. The recor

automatically starts at position 1 of the record if

position has been defined. The pointer moves through the

each field is read or written. As long as the point

altered, it will point to the next field in the record.

lj, it is not

record pointer

* * no other

record as

pointer is not

u

4. 1

CHAPTER 4

PROGRAMMING THE DISK CONTROLLER

The MSD SUPER DISK DRIVE is a "smart" peripheral meaning that it

contains its own microprocessor and memory,, It is possible for the

advanced programmer to actually access the microprocessor and its

memory to provide a wide number of applications. This chapter

deals with the various commands as well as the architecture of the

MSD SUPER DISK DRIVE* Before explaining the commands available for

accessing the SUPER DISK DRIVE, it is necessary to explain the

architecture of the disk drive itself.

The disk drive is operated by the 6511Q microprocessor, a 16K byte

ROM based operating system, and 4K (6K for the SD-2) of random

access memory. The 6511Q contains the necessary I/O lines for

handling both serial and parallel IEEE communications as well as

the disk control functions. The 6511Q also contains 192 bytes of

internal RAM. The disk mechanism is a standard 5-1/4 inch disk

drive with self-contained electronics for handling motor speed

control and data manipulation. This approach allows a wide variety

of commercially available disk drives to be used in the

SUPERDRIVE. The memory organization is given in the table below:

' ^ LOCATION FUNCTION
$0000-$003F Job Cue Access

$0040-$00FF 6511Q Internal RAM

$0100-$013F 6511Q Control Lines

$0140-$3FFF Not Used

$4000-$4FFF SD-1 & SD-2 Buffer/OS Ram Area

$5000-$57FF SD-2 Additional Buffer/OS Ram Area

$5800-$9FFF Not Used

$A000-$BFFF Hardware Control Area

$C000-$FFFF RJM Operating System Area

The most useful area to the advanced programmer is the Buffer Ram

area located between $4000 and $4FFF ($57FF on the SD-2). This

area can actually be written into as well as the 6511Q internal

RAM area with machine language level instructions and executed by

the microprocessor in the disk. By down-loading special routines

to execute within tne disk drive and executing these routines,

additional disk operations or program execution can be obtained.

The method of handling data transfers to and from memory are

referred to as memory commands. Three MEMORY commands exist for

handling memory operations as well as some additional commands

referred to as USER commands.

The following two sections describe these commands in detail. Some

^^ rules must be observed. The disk drive must be initialized using

fi the INITIALIZE command the first time a sequence of MEMORY

commands are sent to the drive. This should only be done once.

Each of the three memory commands must be abbreviated and' the use

of a colon is not permitted in conjunction with these commands.

4.2

MEMORY-WRITE COMMAND:

SM-WCHR$ (adlo) CHR$ (adhi)CHR$(« of bytes)CHR$ (data) • •

Purposes Allows the disk memory to be directly written into.

The MEMORY-WRITE command allows up to 34 bytes to be transferred

to the memory in the SUPERDRIVE. The adlo represents the decimal

equivalent of the lower hexadecimal byte of the memory to be

written to while adhi represents the decimal equivalent of the

hexadecimal upper address byte. The number of bytes to transfer

can be from one to 34 decimal and the data must be transferred in

a decimal equivalent of the hexadecimal code. Each of the portions

of the command are sent using the CHR$ instruction as illustrated

below:

10 OPEN 15,8,15

20 PRINT#15#lfM-WwCHR$(0)CHR$(64)CHR$(3)CHR$(165)CHR$(8)CHR$(96)

30 CLOSE 15

The above routine writes three bytes out to locations $4000

through $4002 (256*64+0=16384=$4000) . The three bytes are 165 ($A5

which is a page zero LDA instruction) , 8 (which is a loction of

$0008) , and 96 ($60 which is a return instruction). In effect, the

above program when sent through this command and executed would

cause the microprocessor in the disk drive to load its accumulator

with the contents of location $0008 and then return control back

to the disk drive.

The MEMORY-READ command is used to read an actual location in the

memory map of the SUPERDRIVE. The command for reading the disk

memory is:

MEMORY-READ COMMAND:

■M-R"CHR$(adlo)CHR$(adhi)

Purpose: To read a specific memory location within disk drive.

The only parameters that need to be specified are the lower byte

of the address in decimal (adlo) and the upper address byte in

decimal (adhi). The next byte that is read from channel #15 will

be from the specified memory location. The following example

illustrates how to read 11 consecutive bytes from location $FF00

to location $FF0A:

10 OPEN15,8,15,"I0"

20 FOR A=0 TO 10

30 PRINT#15,"M-RlfCHR$(A)CHR$(255) I J

40 GET#15,A$:PRINT ASC(A$+CHR$(0)) ; . ^^
50 NEXT

4.3

n

Once a program has been loaded into the disk drives memory, it is

possible to execute that program by using the MEMORY-EXECUTE

command. The format for the command is:

MEMORY-EXECUTE COMMAND;

■M-E»CHR$(adlo)CHR$(adhi)

Purpose: To execute a machine language program located in the

memory of the disk drive.

Once a program has been downloaded to the disk memory, it can be

executed using the MEMORY-EXECUTE command. The command specifies

the upper address byte in decimal (adhi) and the lower address

byte in decimal (adlo) at which the program begins. The use of

this command requires that the end of the program that is to

execute must be terminated with an RTS instruction so. that control

will be returned to the disk operating system.

The following command will execute a program that resides at

location $5000:

OPEN15,8,15,"M-E"CHR$(0)CHR$(80)

f ' Another alternative exists for executing programs using the

BLOCK-EXECUTE command. If programs are stored on the diskette,

they can be loaded and executed with this command. The format for

the command is:

BLOCK-EXECUTE COMMAND;

•BLOCK-EXECUTEs"<channel#>;<drive#>;<track>;<block>

Purpose: To load a machine language program from a block on the

diskette to the buffer memory and execute it.

The BLOCK-EXECUTE command, which can be abbreviated B-E, is

similar to the other BLOCK commands discussed in the last section

except that it will execute the block that has been transferred

from the diskette to the buffer memory. The execution begins at

first location of the buffer and ends when a machine language RTS

instruction is encountered in the program. If a machine language

program resides on Track 3 Sector 4, the following routine will

load it into the disk buffer and execute it:

10 OPEN 15,8,15:OPEN 8,8,8,"#"

20 PRINT#15,"B-E:"8;0;3;4

30 CLOSE 8: CLOSE 15

f0^) Some other helpful commands exist for executing machine language
programs in the disk drives memory. The commands are referred to

as USER commands. A number of USER commands have already been

discussed in their appropriate sections. The last section dealt

with the USER1 and USER2 commands in conjunction with BLOCK-READs

4.4

u
and BLOCK-WRITEs respectively* The UI+ and UI- commands are used

in conjunction with changing the speed of the serial

communications bus between the VIC-20 and the Commodore 64, The

VIC-20 is actually capable of loading data from the disk at a

faster rate than the Commodore 64. The MSD SUPER DISK DRIVE powers

on to the speed of the Commodore 64. If a VIC-20 is being used

with the MSD SUPER DISK DRIVE, the speed can be changed using the

UI- commands The other USER command previously discussed was the

U; or UJ command which is a jump to the power-up vector that

serves as a software reset to the disk drive. In addition to these

commands, there exists seven other USER commands that actually

cause a program to jump to certain places in the buffer memory for

execution of different programs that may have been loaded into the

buffer. The commands are used by opening the error channel and

sending the command using a PRINT# command. An example of the use

of a USER command is:

OPEN 15,8,15

PRINT#15,"U8"

A list of the different USER commands as well as a brief

explanation of the command is presented below:

BLOCK-READ without changing the buffer pointer

BLOCK-WRITE without changing the buffer pointer

Jump to $4200

Jump to $4203

Jump to $4206

Jump to $4209

Jump to $420C

Jump to $420F

Jump to ($FFFA) This is the NMI vector,

or UJ Jump to power-up vector

Set Commodore 64 serial speed

Set VIC-20 serial speed

Ul

U2

U3

U4

U5

U6

U7

U8

U9

U:

or

or

or

or

or

or

or

or

or

or

UI +

UI-

UA

UB

UC

UD

UE

UF

UG

UH

UI

U;

5. 1

CHAPTER 5

CHANGING THE DISK DRIVE DEVICE NUMBER

The device number on the MSD SUPER DISK DRIVE comes from the

factory selected as device number 8, drive number 0 (and 1 in the

case of the SD-2) . This is the usual device number, but if more

than one disk drive is to be used with the system, it is necessary

to give each disk drive a different device number or drive number.

With the disk drive unit it is not possible to change the drive

number but the device number can be changed using either software

or hardware. Th i disk drive determines its device number from a

jumper that is located on the printed circuit board inside the

disk drive. At the time the disk drive is powered on, the jumper

is "read11 by the microprocessor and the number is stored in a

specific memory location. This makes it possible to change the

device number by changing the jumper or by using a MEMORY-WRITE

command to change the memory location that has the device number

stored in it. Changing the device number by changing the jumper

will cause the disk drive to always power on with that number.

Changing the device number with the MEMORY-WRITE command in a

program will mean that the number must be changed each time the

disk drive is turned on. Each method has its own applications and

is detailed below.

CHANGING THE DEVICE NUMBER BY THE JUMPER (HARDWARE METHOD)

In order to change the device number by the hardware method

several steps must be followed:

1. Turn off the disk drive and remove all cables from the drive.

2. Remove the screws from the disk drive cover and remove the

cover.

3. Locate the jumper block JB1 at the top rear of the printed

circuit board (see drawing below).

us u*» ro • _ Httl # ••

un
C12

J1

wm J4

4. A jumper is located on JB1-1 and a jumper is located on JB1-2

when it is shipped from the factory. This is the configuration for

the disk to respond as device 8. If JB1-1 is unplugged and JB1-2

is installed, the device number will become 9. If JB1-2 is removed

but JB1-1 is installed, the device number will be 10. Removing

both jumpers will set the device number to 11.

5. Reinstall the. cover and fasten it securely with the screws that

were removed earlier.

5.2

6. Reconnect the cables and turn the disk drive power switch back

on. The drive is now ready to be used.

CHANGING THE DEVICE NUMBER BY SOFTWARE

The device number is changed by performing a MEMORY-WRITE to

locations $0077 and $0078. The MEMORY-WRITE command for changing

the device number is performed after the error channel has been

opened and has the following format:

PRINT#<file#>r-M-WCHR$(119)CHR$(0)CHR$(2)CHR$(dv+32)CHR$(dv+64)

The dv represents the device number that is desired. An example of

a simple routine for changing the device number to device number 9

is given below:

10 OPEN 15,8,15

20 PRINT#15,lfM-W"CHR$(119)CHR$(0)CHR$(2)CHR$(9+32)CHR$(9+64)

30 END

It is usually desirable to change the device number in hardware

unless a temporary change is all that is desired. In order to use

the software method, only one drive can be powered on, its device

number changed, then another drive powered on and its device

number changed until all drives are on. If this procedure is not

followed, the disk drives will conflict with each other.

A.I

APPENDIX A

DISK COMMAMD SUMMARY (EXCEPT BASIC 4.0 COMMANDS)

The following list is a summary of each command that is available

on the MSD SUPER DISK DRIVE (See APPENDIX C for BASIC 4.0

commands) . The < and > symbols are used to indicate that the

programmer must supply the information between the symbols. The <

and > symbols are not actually a part of the coamand. A device

number of 8 is assumed for the disk drive.

COMMAND

BLOCK-ALLOCATE

BLOCK-EXECUTE

BLOCK-FREE

BLOCK-READ

BLOCK-WRITE

BUFFER-POINTER

CLOSE

COPY

[) DUPLICATE

GET#

INITIALIZE

INPUT#

LOAD

MEMORY-EXECUTE

MEMORY-READ

MEMORY-WRITE

NEW

OPEN

POSITION

PRINT*

RENAME

SAVE

SCRATCH

USER1

USER2

USER COMMANDS

VERIFY

VALIDATE

COMMAND FORMAT

"B-A

"B-E

"B-F

"B-R

"0;<track>;<block>

°<channel>;0;<track>;<block> .

"0;<track>;<block>

"0;<channel>;<track>;<block>

"B-W:"0;<channel>;<track>;<block>

"B-P:"<channel>;<location>

CLOSE<file#>

"C0:<newfile>=0:<oldfile>"

"D0=1" (SD-2 command only)

GET#<file#>,<variable>

"10"

INPUT#<file#>,<variable>

LOAD "0:<file name>",8

"M-E"CHR$(adlo)CHR$(adhi)

"M-R"CHR$(adlo)CHR$(adhi)

"M-W"CHR$(adlo)CHR$(adhi)CHR$(#bytes)CHR$(data)

"N0:<diskette name>,<id>"

0PEN<file#>,8,<sec adr>,"<text string>"

"P"CHR$(channel)CHR$(reclo)CHR$(rechi)

PRINT#<file#>,"<text string>"

"R0:<newname>=0:<oldname>"

SAVE "0:<file name>",8

"S0:<program name>"

"Ul:"<channel>;0;<track>;<block>

"U2:"<channel>;0;<track>;<block>

"U<number>:"

VERIFY "0:<program name>",8

u

u

: ' B.i

n

APPENDIX B

ERROR MESSAGES

Whenever an error occurs on the MSD SUPER DISK DRIVE, the LED on

the front of the disk drive will start flashing. The disk drive

will not send the error message to the computer unless it has been

requested. In order to request an error message to determine what

the error is, it is necessary to OPEN the error channel and read

the error message. This can be accomplished by the following

simple routine:

10 OPEN 15,8,15

20 INPUT#15,A,A$,B$,C$

30 PRINT A,A$,B$,C$

40 CLOSE15

50 END

If BASIC 4.0 is being used, it is possible to print the variable

DS$ to get a display of contents of the error channel.

A list of each error message as well as an explanation of the

^. error message is provided below. The format of the error meesage

C \ is as follows:

00,OK,00,00

Where the first field is the error number, the second field is the

description of the error, and the last two fields represent the

track and sector respectively where it is applicable.

0 OK

This error message is really not an indication of an error and

will occur only if the error channel is read when the LED is not

flashing.

1 PILES SCRATCHED

This is also a non-error condition. Reading the error channel

after a file or files have been SCRATCHed will return with this

message as well as the number of files that have been scratched in

the track field.

2-19 Unused error message channels

20 READ ERROR (BLOCK HEADER NOT FOUND)

The disk controller is not able to locate the header of the block

that has been requested. This can be caused by a bad header on the

^^^ diskette or an illegal sector number being specified.

21 READ ERROR (NO SYNC CHARACTER)

The disk controller was not able to detect a sync mark on the

desired track of the diskette. A number of things can cause this

problem such as no diskette in the drive, improperly seated

diskette, unformatted diskette, or some disk drive malfunction.

B.2

22 READ ERROR (DATA BLOCK NOT PRESENT)

This error results when the disk drive has been requested to read

or verify a data block that was not properly written. The error

results from an illegal track or sector number being specified in

one of the BLOCK commands.

23 READ ERROR (CHECKSUM ERROR IN DATA BLOCK)

This error results from an error in one or more of the data bytes

in the block. The checksum that was stored with the data on the

diskette does not match the checksum generated by the data that

was read from the diskette.

24 READ ERROR (BYTE DECODE ERROR)

Diskette did not format correctly. Problem can be caused by

defective diskette media or disk drive motor speed.

25 WRITE ERROR (WRITE-VERIFY ERROR)

This error is the result of a mismatch between the data that was

written on the diskette and the data that was in memory to be

written to the diskette. The error occurs after a write.

26 WRITE PROTECT ON

This error message is generated any time the disk drive is

requested to write data to the diskette and the write protect

switch has been depressed. Each diskette has a write protect notch

that must not be covered or this error will result.

27 READ ERROR (CHECKSUM ERROR IN HEADER)

The header has been found on the diskette but the checksum

generated while reading the header is incorrect.

29 DISK ID MISMATCH

Whenever a diskette is inserted into the drive and initialized the

diskette id is recorded by the controller. If another disk is

inserted and not initialized this error will occur. A bad header

can also produce this error.

30 SYNTAX ERROR (GENERAL SYNTAX)

This error results from the transfer of a command that the disk

drive can noc interpret completely. The command should be examined

for possible errors and corrected before transferring again.

31 SYNTAX ERROR (INVALID COMMAND)

This is a result of the disk drive not recognizing the command as

a legitimate command.

32 SYNTAX ERROR (LONG LINE)

The command sent to the disk drive is more than 40 characters. i J

(INVALID FILE NAME)

result when pattern matching has been used

33

This

incor

SYNTAX

error

rectly.

ERROR

will

B.3

34 SYNTAX ERROR (NO FILE GIVEN)

The file name has not been given or an error exists in the portion

of the file name specified.

35-38 Unused error message channels

39 SYNTAX ERROR (INVALID COMMAND)

This error can result if a command sent to the command channel is

not recognized by the disk drive.

50 RECORD NOT PRESENT

This error message occurs in conjunction with relative files or

the disk reading past zhe last record through the INPUT# or GET#

commands. This error serves to warn that a GET# or INPUTf should

not be attempted after this error message. The error message can

be used in conjunction with a PRINT# statement to expand a

relative file.

51 OVERFLOW IN RECORD

If the PRINT# statement exceeds the record boundary this error

results. Information is truncated. This error often occurs when

the carriage return is not considered in the count of the total

number of characters in the record.

52 FILE TOO LARGE

If a disk overflow will occur as a result of the record position

in a relative file this error will result.

53-59 Not used

60 WRITE FILE OPEN

This error results from trying to OPEN a file for reading that has

not been closed after writing.

61 FILE NOT OPEN

If a file is being accessed that has not been OPENed, this error

will result.

62 FILE NOT FOUND

This error results when the requested file is not in the directory

of the diskette.

63 FILE EXISTS

The file name that is being created already exists on the

diskette.

64 FILE TYPE MISMATCH

The file type specified does not match the file type found in the

directory of the diskette.

65 NO BLOCK

If the BLOCK-ALLOCATE command is used on a block that has already

been allocated, this error results. The parameters returned

indicate the track and sector number of the next available track

B.4

and sector. A number of zero for the track and sector indicates

that no other higher track or sector is available.

66 ILLEGAL TRACK AND SECTOR

The disk has tried to access a track or sector that does not

exist.

67 ILLEGAL SYSTEM T OR S

This error message indicates an illegal system track or sector.

68-69 Not used

70 NO CHANNEL (AVAILABLE)

The requested channel is not available or all channels are

currently being used.

71 DIRECTORY ERROR

This error results when the BAM does not match the internal count.

Something has happened to the BAM image in memory or the BAM

allocation is at fault. By sending an INITIALIZE command to the

disk drive this error can be corrected. If some files were active

they may be terminated by this initialization.

72 DISK PULL

The disk is full or the maximum number of entrias are in the

directory.

73 DOS MISMATCH

In the case where a particular disk is only read compatible/ this

error will result when an attempt is made to write to the

diskette.

74 DRIVE NOT READY

This error results when an attempt is made to access the disk

drive without any diskette in the drive.

C.I

APPENDIX C

BASIC 4.0 COMMANDS

A set of commands exist for use in conjunction with BASIC 4.0. On

computers that have the BASIC 4.0 commands, the MSD superdrive

will respond to those commands as well as the BASIC 3.0 commands.

These commands are identified in this section along with the

appropriate BASIC 3.0 command. For a more detailed explanation of

the command, refer to the section that explains the comparable

BASIC 3.0 command. The < and > symbols are used to indicate that

the programmer must supply the information between those symbols.

Those symbols are not a part of the command.

BASIC 3.0 COMMAND

LOAD"0:<program name>",8

LOAD"$0",8:LIST

LOAD"*",8:RUN

SAVE"0:<program name>"r8

BASIC 4.0 COMMAND

DLOAD"<program name>"fD0

DIRECTORY or DKshifted R>

shifted RUN/STOP

DSAVE"<program name>"fD0

The commands that are sent to the error channels are different in

many cases. One big difference is the fact that an error message

number can be read without opening the error channel. The command

for reading the error message number in BASIC 4.0 is ?DS$ or ?DS.

The other commands that are sent through the command channel are

(assume that file #15 is opened):

BASIC 3.0 COMMAND

PRINT#15fflI0"

PRINT#15,"N0:<disk name>,<id>'

PRINT#15,"S0:<file name)"

BASIC 4.0 COMMAND

PRINT#15,"I0"

HEADER"<disk name>",D0,Kid>,U8

SCRATCH"<file name>",U8

PRINT#15,flC0:<nfile>=0:<ofile>" COPY D0,"<ofile>" TO "<nfile>",U8

PRINT#15f "C0:<nfile>=<of l>f<of2>" CONCAT D0,"<ofl>" TO "<nf ile>" , U8

PRINT#15,"D0=1" BACKUP Dl TO D0

PRINT#15, "R0:<new>=<old>" RENAME D0,fl<old>" TO fl<new>"fU8

PRINT#15f"V0" COLLECT D0,U8

In order to open and close a channel as well as specify the

position pointer in a relative file using BASIC 4.0 the following

C.2

U
commands apply:

DOPEN<file#>,"<file name>,D0,L<record length>,8,<mode>

DCLOSE<file#>

RECORD<file#>,<record#>,<byte position>

u

SD-1 WARNING

This equipment generates/ and uses radio frequency energy and if

not installed and used properly, that is, in strict accordance

with the manufacturer's instructions, may cause interference to

radio and television reception. It has been type tested and found

to comply with the limits for a Class B computing device in

accordance with the specifications in Subpart J of Part 15 of FCC

Rules, which are designed to provide reasonable protection against

such interference in a residential installation. However, there is

no guarantee that interference will not occur in a particular

installation. If this equipment does cause interference to radio

or television reception, which can be determined by turning the

equipment off and on, the user is encouraged to try to correct the

interference by one or more of the following measures:

Reorient the receiving antenna

Relocate the computer with respect to the receiver

Move the computer away from the receiver

Plug the computer into a different outlet so that computer

and receiver are on different branch circuits.

If necessary, the user should consult the dealer or an experienced

radio/television technician for additional suggestions. The user

may find the following booklet prepared by the Federal

Communications Commission helpful:

"How to Identiify and Resolve Radio-Television Interference

Problems11.

This booklet is available from the U.S. Government Printing

Office, Washington, DC 20402, Stock No. 004-000-00345-4.

The MSD Super Disk Drive cabinet will be warm when in operation.

This is normal and will not effect operation. A special heat

dissipater has been installed which transfers the heat to the

entire cabinet thus keeping the electronic circuitry cool. Please

do not block air flow from the vents located on the side and

bottom of the cabinet.

o

o

SD-2 WARNING

This equipment generates, uses and can radiate radio frequency-

energy and if not installed and used in accordance with the

instruction manual, may cause interference to radio

communications. It has been tested and found to comply with the

limits for a Class A computing device pursuant to Subpart J of

part 15 of FCC Rules, which are designed to provide reasonable

protection against such interference when operated in a commercial

environment. Operation of this equipment in a residential area is

likely to cause interference in which case the user at his own

expense will be required to take whatever measures may be required

to correct the interference.

The MSD Super Disk Drive cabinet will be warm when in operation.

This is normal and will not effect operation. A special heat

dissipater has been installed which transfers the heat to the

entire cabinet thus keeping the electronic circuitry cool. Please

do not block air flow from the vents located on the side and

bottom of the cabinet.

u

u

u

LIMITED 180-DAY WARRANTY

Micro-Systems Development, Inc. (MSD) warrants to the original consumer purchaser

that its Super Disk Drive (Unit) - Floppy Disk Drive for Commodore computers

shall be free from any defect in material and workmanship for a period of 180

days from the date of purchase. If a defect covered by this warranty occurs

during this 180 day warranty period, you should return the Unit within such 180

days to the place of purchase or contact MSD for nearest repair facility. The

address and phone number are provided below:

Micro Systems Development, Inc.

10031 Monroe Drive

Dallas, Texas 75229

800-527-5285 (outside texas) or (214)357-4434

Pack the Unit carefully , preferably in its original shipping container to avoid

transit damage. Enclose proof-of purchase.

This warranty does not cover damage or malfunctions resulting from improper

l»iidling, accident, misuse, abuse, failure of electrical power, use with other

(nputers not manufactured by Commodore Business Machines, Inc., damage while in
transit for repairs, repairs attempted by any unauthorized person or agency, or

any other reason not due to materials or workmanship. This warranty is also void

if the serial number has been altered, defaced or removed.

(ove r)

CUT ALONG LINE

Important; This Warranty Registration must be returned within 10 days after the

date of Purchase in order to receive warranty protection.

Purchaser' s Name Address,

City State Zip Code,

Place of Purchase Date

City State Zip Code ,

Serial

^rchaser's Computer (VIC 20, C64, CBM)

VIC 20, C64 and CBM are Trademarks of Commodore Business Machines, Inc.

ANY IMPLIED WARRANTIES ARISING OUT OF THE SALE OF THIS UNIT INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE LIMITED IN DURATION TO THE ABOVE ONE HUNDRED EIGHTY (180) DAY PERIf

MSD'S LIABILITY IS LIMITED SOLELY TO THE REPAIR OR REPLACEMENT OF THE DEFECT*^
UNIT IN ITS SOLE DISCRETION AND IN NO EVENT SHALL INCLUDE DAMAGES FOR LOSS OF USE

OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE

PURCHASER, INCLUDING WITHOUT LIMITATION ANY DATA OR INFORMATION WHICH MAY BE LOST

OR RENDERED INACCURATE, EVEN IF MSD HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

MSD shall have no liability or responsibility to a purchaser, customer, or any

other person or entity with respect to any liability, loss or damage caused or

alleged to be caused directly or indirectly by Unit. This includes but is not

limited to any interruption of service, loss of business or anticipatory profits
or consequential damages resulting from the use or operation of the Unit,

MSD shall have no obligation to enhance or update any Unit once manufactured.

Some states do not allow limitations on how long any implied warranty lasts or

exclusion of consequential damages, so the above limitations or exclusion may not
apply to you. This warranty gives you specific legal rights, and you may also
have other rights which vary from state to state.

